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SUMMARY 
This paper presents a detailed numerical solution to a simplified version of two-dimensional stratified flow 
over a backward-facing step with a Froude number of 16/9, a Reynolds number of 800 and a Prandtl 
number of l - o n e  of the Open Boundary Condition Symposium test problems. The steady state solution 
was derived by integrating the time-dependent Boussinesq equations forward in time using a semi-implicit 
finite-element-based model on a 38400-element mesh. In addition to presenting the results derived.on this 
grid, the paper also presents the results of a Richardson extrapolation calculation for a set of ‘key’ 
parameters. It is hoped that this solution can be used as a baseline to compare the performance of the 
various techniques discussed at the Open Boundary Condition Symposium. 
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1. INTRODUCTION 

The Open Boundary Condition Symposium was conceived as a forum to exchange ideas and 
techniques for approximating ‘open boundaries’. Open boundaries are computational boundaries 
that are most often artificial in the sense that while the simulation is supposed to represent flow in 
a very large or even infinite domain, the computational domain is truncated due to com- 
putational limitations, thus imposing an artificial outflow boundary on the problem. The 
stratified flow over a backward-facing step is one of a set of trial problems proposed to provide a 
common test bed for the discussions. The purpose of this paper is to present an accurate and 
detailed solution to the problem. These data can then be used to measure the performance of 
prospective open boundary conditions. 

2. THE PROBLEM 

The problem is a simplified version of stratified flow over a backward-facing step in an infinite 
domain. The problem domain and specified boundary conditions are shown in Figure 1. (Note 
that the step has been approximated by a parabolic inflow over a no-slip insulated wall for 
computational convenience.) 
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u=v=O, T=l 

u=24y(0.5-y) / v=o 
T=2y 

- . x (0 to -) 
u=v=o 
aT/ax=O 

Figure 1 .  Continuum problem 

The equations used in the simulation were the 2D non-dimensional Boussinesq equations 

- + u - V u  = - V P  + Re-'V2u + Fr- 'kT ,  (1) 

v . u = o ,  (2) 

au 
at 

(3) 
aT 
- + u * V T  = Pe-  ' V 2  T, 
at 

where k is the unit vector in the y-direction, Re = uoH/v  is the Reynolds number, Fr = ( U ~ / U * ) ~  is 
the Froude number and Pe = PrRe is the Peclet number, with Pr = V / K  the Prandtl number. Here 
uo is the average inlet velocity, H is the height of the channel, H / u ,  is the characteristic time and 
uB = NH is the buoyancy velocity, with N = (ygAT/H)'" the Brunt-Vaisala frequency; y is the 
volumetric expansion coefficient and g is 'gravity'. 

The parameters chosen for the simulation reported here were Pr = 1, Fr = 16/9 and 
Re = Pe = 800. Defining the Richardson number as Ri = l/Fr, the Grashof number as 
Gr = Re2/Fr  and the Rayleigh number as Ra = PrGr yields Ri = 9/16 and Gr = Ra = 3.6 x lo5. 

3. THE SOLUTION METHOD 

The method used solves the time-dependent Boussinesq equations of motion and temperature. 
The spatial discretization used the finite element method employing bilinear finite elements for 
temperature and velocity, piecewise constant elements for pressure, and lumped mass in the time 
derivatives. The time integration scheme was the semi-implicit backward Euler scheme of Gresho 
and Chan' wherein the advection terms are integrated via forward Euler with balancing tensor 
diffusivity (BTD) and the diffusion terms are integrated via backward Euler. In order to stabilize 
the scheme with respect to gravity (buoyancy) waves, the forward-backward scheme of Sun2 is 
used wherein the temperature is first advanced in time to n + 1, then the temperature at n + 1 is 
used in the buoyancy term of the pressure and momentum equations. In more detail: first the 
temperature is updated via 

(I + AtM, K,)T, + I = T ,  + At M; [ FX - N,( u,)T,] ; (4) 
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next the pressure is calculated from the 'consistent' Poisson equation using T,,, in the buoyancy 
term via 

u = v r O ,  T=l 

u=24y (0.5-y) , v=o 
T=2y 

fn=-Phydmt.tic 
- b X  av/ax=o 

u=v=o aT/ ax= o 
aT/ax=O 

and finally the velocity is updated via 

(I+AtM-'K,)u,+, =U,+A~M-'[F,,-N(~,)U,-CP,,]. (6) 

In the above equations, T is a vector of length n (the number of node points) of nodal temperature 
values, u is a vector of length 2n containing both nodal velocity components, and P is a vector of 
length rn (the number of elements) containing the element pressures. M is the 2n x 2n lumped 
mass matrix, K is the 2n x 2n diffusion plus BTD matrix, N is the 2n x 2n non-linear advection 
matrix, C is the 2n x rn gradient matrix and its transpose is the rn x 2n divergence matrix. The 
subscript 's' indicates similar matrices of size n x n. F is a vector of length 2n containing boundary 
conditions and the buoyancy terms for the momentum equation and is thus a function of T,, 1, 
while FT is the vector of length n containing boundary conditions and source terms for the 
temperature. N, C and the BTD matrix are approximated via one-point Gaussian quadrature. All 
other matrices are evaluated with full Gaussian quadrature. 

The Poisson equation was solved via a direct skyline solver, while the linear systems for the 
velocity components and the temperature were solved using a diagonally scaled conjugate 
gradient met hod. 

4. THE SIMULATION 

The computational domain and boundary conditions used in the simulation are shown in 
Figure 2. The outflow was taken to be a distance of 30 units downstream from the inlet, i.e. twice 
the length of the longer test domain. The outflow boundary conditions used were based on the 
finite element 'natural boundary conditions', which here are 

Figure 2. Computational domain and boundary conditions 
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wheref, a n d i  are the specified pseudo-tractions. We usedi= 0 andf, = - Phydrostatic a la Leone 
et ~ l . , ~  i.e. 

The outflow boundary condition for T is also the natural boundary condition aT/ax = 0. 
On the basis of preliminary calculations on coarser grids, a final grid of 80 x 480 equal-size 

rectangular elements for a total of 38400 elements, 38961 nodes and 155283 unknowns was 
selected. The resulting element sizes were Ax = 0.0625 by Ay = 0.0125. The simulation was 
integrated forward in time from an initial state that corresponds to a potential flow of an 
isothermal (T  = 0) fluid forced with the inflow boundary conditions. The integration continued to 
t = 400 time units. Analysis of plots of the time history curves for the unknowns at several nodes 
as well as comparisons of global field plots indicate that steady state was achieved at approxim- 
ately 200 time units. 

Figure 3 shows a comparison of the calculated u-velocity, temperature and vorticity profiles at 
the domain outlet boundary x = 30 with the analytic stratified Poiseuille flow solution that would 
obtain far from the step. It shows that the u-velocity is within 1% of the asymptotic analytic 
solution, the temperature profile is within 1.25% and the vorticity is within 2%. This is a strong 
indication that the outflow boundary is ‘far enough’ away from the step and the boundary 
conditions were well enough behaved that the solution is not significantly perturbed by the finite 
domain. 

-5 -.4 :.J -.2 -.I .o . I  .2 .s .1 .I 
tielght 

Figure 3. Vertical profiles at the domain boundary x = 30 of the normalized difference between the calculated value and 
the analytic stratified Poiseuille flow solution of the u-component of velocity (solid line), the temperature (dashed line) and 

the vorticity (dotted line) 
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5. RESULTS 

The steady state flow configuration for the test problem long domain, 0 6 x < 15, is illustrated in 
Figures 4 and 5. The core of the flow descends from the inlet, rebounds and descends slightly 
again before filling the channel and approaching the stratified Poiseuille flow solution. There are 
three eddies on the bottom wall. The first is a very weak counterclockwise-rotating eddy (eddy 1) 
in the bottom corner of the step. The second (eddy 2) is above and to the right of eddy 1 and is a 
clockwise-rotating eddy. The third (eddy 3) is also a clockwise-rotating eddy below the main flow 
at x N 6. In addition, there are two counterclockwise-rotating eddies on the top wall, one (eddy 4) 
located above the main flow near x 2: 3 and the second (eddy 5) located at x N 9. 

Table I lists the positions and sizes of the five eddies, For the purposes of this benchmark an 
eddy was said to start at the point where the vorticity on the appropriate wall went through zero 
and to end at the next wall position with zero vorticity. (For steady two-dimensional flow this 

Figure 4. Steady state velocity field on the domain O<x< 15.  For clarity only every fourth vector is plotted 

-1  c 1r 

-1 I- 
1t 

-1 
I I I I I I 1 I I I 1 I I I I 

0 2 4 6 8 10 12  14 
X 

Figure 5. Steady state contours (for streamfunction and vorticity, positive contours solid lines and negative contours 
dashed lines) of (a) temperature with contour interval of @l, (b) streamfunction with contour interval of 00994 in the main 
flow (between the separation streamlines) and 0004 within the eddies, (c) vorticity with contour interval of 2.3268, and 

(d) pressure with contour interval of OM841 on the domain Obx< 15 
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Table I. Eddy positions and lengths from the 80 x 480 simulation 

Eddy Start x stop x Length 

1 (bottom) 
2 (bottom) 
3 (bottom) 
4 (top) 
5 (top) 

0.OOO 0.356 0.356 
0.356 2.498 2.142 
4.548 8.39 1 3.843 
1.210 5.492 4.282 
8.164 10.215 2.05 1 

Table 11. Eddy streamfunction (extremum minus separation) values and locations from 
the 80 x 480 simulation 

~~ 

Eddy Extremum value x-co-ordinate y-co-ordinate 

1 (bottom) O~ooo08 0.0 1 25 - 0*4Ooo 
2 (bottom) -0.02239 1.500 - 0.2625 
3 (bottom) -0.00851 6.625 - 0'3OOO 
4 (top) 0.0 1 8 80 4~000 02375 
5 (top) 0~00020 9.187 04500 

Figure 6. Steady state velocity field on the domain O<x<7. For clarity only every second vector is plotted. 

also corresponds to the positions of zero wall shear stress.) The length of the eddy was the 
distance between the starting and ending positions. This is not truly indicative of the length of 
eddy 2 of course, but it still provides relevant data for comparison. The strengths of the eddies are 
indicated by the streamfunction extrema contained within the eddy. These extrema and their 
positions are listed in Table 11. The values reported are the difference between the extremum and 
the appropriate separation value. 

To provide more detail and to facilitate comparisons, the global fields of velocity, temperature, 
streamfunction, vorticity and pressure are also presented on the second test domain, 0 < x < 7, in 
Figures 6 and 7. Only eddies 1, 2, and 4 are contained within this truncated domain. Eddy 3 
begins within the domain but extends beyond x = 7. 

The vertical profiles of u, u, Tand P at x = 0,3,7 and 15 are shown in Figures 8-11 respectively. 
Vertical profiles of streamfunction and vorticity at the same locations are shown in Figures 12 
and 13. 

For information and comparison, a number of quantities have been calculated at the two test 
boundaries, x = 7 and 15. Those quantities which are spatial derivatives were calculated from the 
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Figure 7. Steady state contours (for streamfunction and vorticity, positive contours solid lines and negative contours 
dashed lines) of (a) temperature, (b) streamfunction, (c) vorticity and (d) pressure on the domain 0 6 x G 7 .  The contour 

values plotted are the same as in Figure 5 

simulation results using the simplest second-order centred finite difference method. Figures 1 4 1 9  
present the vertical profiles at x = 7 and 15 of au/ax, a@y, au/ax, aT/ax, a(vorticity)/ax and 
&lay + &/ax respectively. (Note that the top and bottom wall values of au/ay where calculated 
using appropriate second-order one-sided finite difference approximation.) 

In many finite element models the so-called natural boundary condition on a vertical boundary 
for the u-velocity takes the form of either the normal pseudo-traction 

1 a u  f =  - p + - -  
Re ax 
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Figure 8. Vertical profiles of the u-velocity at x = 0 (solid line), x = 3 (dashed line), x = 7 (dotted line) and x = 15 (chain 
line) 
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Figure 9. Vertical profiles of the u-velocity at x = 3 (dashed line), x = 7 (dotted line) and x = 15 (chain line) 
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Figure 10. Vertical profiles of the temperature at x = 0 (solid line), x = 3 (dashed line), x = 7 (dotted line) and x = 15 
(chain line) 
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Figure 11. Vertical profiles of the pressure at x = 0 (solid line), x = 3 (dashed line), x = 7 (dotted line) and x = 15 (chain 
line). Note that the pressure field is determined only up to an additive constant, here approximately zero at x = 30 

and y = 0.5 
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Figure 12. Vertical profiles of the streamfunction at x = 0 (solid line), x = 3 (dashed line), x= 7 (dotted line) and x = 15 
(chain line) 
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Figure 13. Vertical profiles of the vorticity at x = 0 (solid line), x = 3 (dashed line), x = 7 (dotted line) and x = 15 (chain 
line) 
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Figure 14. Vertical profiles of du/ax at x = 7 (solid line) and x = 15 (dashed line) 
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Figure 15. Vertical profiles of du/dy at x = 7 (solid line) and x = 15 (dashed line) 
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Figure 16. Vertical profiles of &/ax at x = 7 (solid line) and x = 15 (dashed line) 
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Figure 17. Vertical profiles of dT/i?x at x = 7 (solid line) and x = 15 (dashed line) 
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Figure 18. Vertical profiles of a(vorticity)/ax at x = 7 (solid line) and x = IS (dashed line) 
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Figure 19. Vertical profiles of au/ay + &/ax at x = 7 (solid line) and x = 15 (dashed line) 
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or the normal traction 
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2 au f = - p + - -  
Re ax’ 

while for u it is either the shear pseudo-traction 

I av A = - -  
Re ax 

or the shear traction 

f -I(&+!!). 
‘ - R e  ay ax 

The profiles of the normal pseudo-traction are presented in Figure 20 at x = 7 and 15. It is 
noteworthy that in this case the hydrostatic pressure field is more than three orders of magnitude 
greater than the normal viscous stress. Thus f, = - P is a very good approximation for either 
case. 

Given that - P is a good approximation forf,, the question becomes how to estimate P. One 
possible method of doing this is to assume that the pressure at the outlet is hydrostatic, i.e. P is a 
function of y only and can be calculated from the temperature field via 

- = Fr-’T. 
a p  
aY 

(9) 
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Figure 20. Vertical profiles of (l/Re)du/dx-P at x = 7 (solid line) and x = 15 (dashed line) 
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The nodal hydrostatic pressure was calculated from the simulation results at x = 15 and 7 via the 
formula 

where Pimax, the pressure at the top node of the grid, was assumed to be zero and the integration 
proceeded downwards. The results of this calculation are presented in Figure 21. Also shown in 
Figure 21 is the difference between the simulation pressure and the hydrostatic pressure 
normalized by the pressure at the bottom at the grid. While the calculated pressure is within 1 % 
of the hydrostatic at x = 15, there is a significant deviation (greater than 10%) from hydrostatic at 
x = 7 caused by the dynamic pressure of the eddy. 

6. DISCUSSION 

In an attempt to measure the accuracy of the results via a Richardson extrapolation, the 
simulation was repeated using grids with one-half and one-quarter of the original resolution, i.e. 
grids of 40 x 240 and 20 x 120. However, the 20 x 120 grid was too coarse to be within the 
convergence range and the results were inconclusive. 

However, we felt that the 40 x 240 results were accurate enough and therefore performed a 
Richardson extrapolation assuming O( h2)  error behaviour for the eddy statistics. Tables 111 
and IV presents these results. On the basis of this, we believe that the results presented herein for 
the stratified backward-facing step as defined in Section 2 are within 1% of the correct solution. 
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Figure 21. Vertical profiles of the hydrostatic pressure (HP) defined by equation (10) at x = 7 (solid line) and x = 15 
(dashed line). Also, vertical profiles of the difference between the actual calculated pressure and the hydrostatic pressure 

normalized by the calculated bottom pressure for x = 7 (dotted line) and x = 15 (chain line) 
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Table 111. Eddy positions and lengths resulting from O ( h 2 )  Richardson 
extrapolation using the 80 x 480 and 40 x 240 grid results 

Eddy Start x stop x Length 

1 (bottom) 
2 (bottom) 
3 (bottom) 
4 (top) 
5 (top) 

0.000 0.355 0355 
0.355 2508 2.153 
4.565 8.413 3.848 
1.215 5.512 4.297 
8.188 10234 2.046 

Table IV. Eddy streamfunction (extremum minus separation) values and positions result- 
ing from O(hz )  Richardson extrapolation using the 80 x 480 and 40 x 240grid results 

Eddy Extremum value x-co-ordinate y-co-ordinate 
~ ~ 

1 (bottom) O.ooOo8 00125 - 0.4OOO 
2 (bottom) - 0.02241 1 3 x l  -0.2583 
3 (bottom) -0.00852 6625 - 0.3000 
4 (top) 0.01 880 4.042 02417 
5 (top) 0.00017 9208 0.4500 
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